Modeling EphB4-EphrinB2 protein–protein interaction using flexible docking of a short linear motif
نویسندگان
چکیده
BACKGROUND Many protein-protein interactions are mediated by a short linear motif. Usually, amino acid sequences of those motifs are known or can be predicted. It is much harder to experimentally characterize or predict their structure in the bound form. In this work, we test a possibility of using flexible docking of a short linear motif to predict the interaction interface of the EphB4-EphrinB2 complex (a system extensively studied for its significance in tumor progression). METHODS In the modeling, we only use knowledge about the motif sequence and experimental structures of EphB4-EphrinB2 complex partners. The proposed protocol enables efficient modeling of significant conformational changes in the short linear motif fragment during molecular docking simulation. For the docking simulations, we use the CABS-dock method for docking fully flexible peptides to flexible protein receptors (available as a server at http://biocomp.chem.uw.edu.pl/CABSdock/ ). Based on the docking result, the protein-protein complex is reconstructed and refined. RESULTS Using this novel protocol, we obtained an accurate EphB4-EphrinB2 interaction model. CONCLUSIONS The results show that the CABS-dock method may be useful as the primary docking tool in specific protein-protein docking cases similar to EphB4-EphrinB2 complex-that is, where a short linear motif fragment can be identified.
منابع مشابه
EphB4 Forward‐Signaling Regulates Cardiac Progenitor Development in Mouse ES Cells
Eph receptor (Eph)-ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4-ephrinB2 regulates cardiovascular development. To assess the role of EphB4-ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5(+) cardiac p...
متن کاملThe soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth.
The receptor tyrosine kinase EphB4 and its ligand EphrinB2 play a crucial role in vascular development during embryogenesis. The soluble monomeric derivative of the extracellular domain of EphB4 (sEphB4) was designed as an antagonist of EphB4/EphrinB2 signaling. sEphB4 blocks activation of EphB4 and EphrinB2; suppresses endothelial cell migration, adhesion, and tube formation in vitro; and inhi...
متن کاملEphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinB2.
The tyrosine kinase receptor EphB4 interacts with its ephrinB2 ligand to act as a bidirectional signaling system that mediates adhesion, migration, and guidance by controlling attractive and repulsive activities. Recent findings have shown that hematopoietic cells expressing EphB4 exert adhesive functions towards endothelial cells expressing ephrinB2. We therefore hypothesized that EphB4/ephrin...
متن کاملEffects of Porphyromonas gingivalis lipopolysaccharide on osteoblast-osteoclast bidirectional EphB4-EphrinB2 signaling
In bone remodeling, the Eph family is involved in regulating the process of osteoclast and osteoblast coordination in order to maintain bone homeostasis. In this study, the effects of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the osteoblast-osteoclast bidirectional EphB4-EphrinB2 signaling were investigated. An osteoblast-osteoclast co-culture system was achieved successfully. Hen...
متن کاملThe coexpression of EphB4 and EphrinB2 is associated with poor prognosis in HER2-positive breast cancer
OBJECTIVE HER2 overexpression is associated with aggressive phenotypes in breast cancer, including increased tumor proliferation, greater invasiveness, and reduced overall survival. The overall response rate to HER2-targeted therapies remains <30%. There is an urgent need for the identification of efficient markers to predict patients with a poor prognosis. This study was designed to investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017